The 2024 Wheel Reinvention Jam is in 5 days. September 23-29, 2024. More info

OH Picker

Oswald Hurlem
I've posted a new project on GitHub. It is a finished project in that I did what I wanted to do and don't plan to do any more.

It's called OH Picker and it is an experimental program for applying affine transformations to colors in L*a*b* (aka CIELAB) space using a scene graph. I made it as a personal exercise in working with both L*a*b* and the Dear ImGui library.

OH Picker takes advantage of the fact that, because L*a*b* has perceptual uniformity, it can be treated as a Euclidean space. Colors are treated as points and affine transformations (applied via a scene graph akin to many game engines') correspond to color alterations. Translation becomes tinting, scaling becomes saturation, and reflection becomes -- among other things -- hue shifting.

You can learn learn more about it (and the color space it employs) through this video. Those who are familiar with L*a*b* can skip to 9:14, and those who want to open the program up and start playing around with it needn't watch past 15:48.


The Windows binary can be downloaded here.

Comments

Nice video, very inspirational. I wasn't aware of LAB colors, now I want to go design to some visual effects. Thanks for sharing.

PS. What were your thoughts on DearIMGui?
@Croepha
Thank you!
FTMP I think DearImGui is fantastic. To some extent it is held back by decisions made in past to go more simple and more high-performance -- for example, you cannot embed a set of ImGUI controls in a transformed container like you can with XAML and Scaleform. This means that there's some things you can't do with it. But for the 99% of UI which is uniformily scaled and laid out in screen-space, it is excellent. I wanted to find out how a set of controls like this could enable artists to work more productively, and the IMGUI paradigm allowed me to answer that question, really freaking simply and easily. I'm glad I chose it over the XAML which I was more used to.

I'd like to see IMGUI combined with more sophisticated layout engines... that's what I had in mind when I released https://github.com/HMNBadBoyz/ImWPF
Lab isn't perfect (but it's certainly good enough to be of practical use). I'm interested in knowing if any research is happening today to develop a better Lab.

At my previous job I implemented CIEDE2000 in D and an OpenCL kernel for RGB to LAB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/++ Colour conversion and comparison
  + Authors: Mio Iwakura, mio.iwakura@gmail.com +/
module treecount.colours;
import core.stdc.stdio;
import std.math, std.range, std.stdio;
import gl3n.linalg;
import treecount.coords, treecount.globals, treecount.math;

/++ The CIEDE2000 algorithm for computing the difference between two colours
  +
  + Adjusting the weighting factors is not recommended unless you know what you
  + are doing. For our purposes, the defaults of 1.0 are currently used.
  +
  + If you compile with the debug tag `deltaE_00`, intermediate values will be
  + printed to standard out for every invocation of the function for debugging
  + purposes.
  + Standards: Conforms to CIEDE2000 specification
  + Returns: The difference between the two input colours as defined by the
  +          CIEDE2000 algorithm. Small values mean the colours are close,
  +          big values mean they are far away. The range of values seems to
  +          be around [0, 100] but I'm not an expert on this algorithm and did
  +          not find clear documentation regarding the range of values produced
  +          by the algorithm.
  + Params:
  +     colour1 = The first input colour
  +     colour2 = The second input colour
  +     kL = A weighting factor for lightness
  +     kC = A weighting factor for chroma
  +     kH = A weighting factor for hue
  + Bugs: The unit tests all pass with phobos's default std.math.approxEqual,
  +       but I've noticed small discrepancies, a few of which are documented
  +       in code comments. If you have any insights or suggestions, please
  +       don't hesitate to submit an issue and/or open a pull request!
  +       Github issues is the prefered platform for discussion, but if
  +       nothing else, you can contact the author of this module by email.
  + See_Also:
  +     $(LINK http://www.ece.rochester.edu/~gsharma/ciede2000/ciede2000noteCRNA.pdf) +/
float deltaE_00(in Lab colour1, in Lab colour2, in float kL = 1.0, in float kC = 1.0,
    in float kH = 1.0) pure nothrow @nogc @trusted
{
    /* The number comments correspond to sections in
     * "The CIEDE2000 Color-Difference Formula: Implementation Notes,
     *  Supplementary Test Data, and Mathematical Observations" */
    /* 1. */
    //(2, 3)
    immutable avgC = (hypot(colour1.a, colour1.b) + hypot(colour2.a, colour2.b)) / 2;
    //(4)
    immutable G = 0.5 * (1 - sqrt(avgC ^^ 7 / (avgC ^^ 7 + 25L ^^ 7)));
    auto a(float colourA) pure nothrow @nogc @safe
    {
        immutable result = (1 + G) * colourA;
        return result;
    }
    //(5)
    immutable a1 = a(colour1.a);
    immutable a2 = a(colour2.a);
    //BUG: pair 22 a2 -> 4.9449 instead of 4.9450
    //     4.94492, these bugs aren't just bankers rounding!
    //NOTE: equations 6-7 are Lab -> LCh
    //(6)
    immutable C1 = hypot(a1, colour1.b);
    immutable C2 = hypot(a2, colour2.b);
    //BUG: pair 21 C2 -> 4.7955 instead of 4.7954
    //BUG: pair 22 C2 -> 4.9449 instead of 4.9450
    auto h(float a, float b) pure nothrow @nogc @safe
    {
        //article does not mention floating point quirks,
        //but I assume accounting for it is necessary
        immutable result = a.approxEqual(0) && b.approxEqual(0) ? 0 : atan2(b, a).toDegrees();
        return result;
    }
    //(7)
    immutable h1 = h(a1, colour1.b);
    //BUG: various values are slightly off
    immutable h2 = h(a2, colour2.b);
    /* 2. */
    //(8)
    immutable deltaL = colour2.L - colour1.L;
    //(9)
    immutable deltaC = C2 - C1;
    //(10)
    immutable C1C2 = C1 * C2;
    float deltah = h2 - h1;
    if (C1C2.approxEqual(0.0))
        deltah = 0.0;
    else if (deltah > 180.0)
        deltah -= 360.0;
    else if (deltah < -180.0)
        deltah += 360.0;
    //(11)
    immutable deltaH = 2 * sqrt(C1C2) * sin((deltah / 2).toRadians());
    /* 3. */
    //(12)
    immutable avgL = (colour1.L + colour2.L) / 2;
    //(13)
    immutable avgNewC = (C1 + C2) / 2;
    //(14)
    float avgh;
    {
        immutable h1ph2 = h1 + h2;
        if (C1C2.approxEqual(0.0))
            avgh = h1ph2;
        else if (abs(h1 - h2) <= 180.0)
            avgh = h1ph2 / 2.0;
        else if (h1ph2 < 360.0)
            avgh = (h1ph2 + 360.0) / 2.0;
        else
            avgh = (h1ph2 - 360.0) / 2.0;
    }
    //(15)
    immutable T = 1 - 0.17 * cos((avgh - 30).toRadians()) + 0.24 * cos((2 * avgh).toRadians()) + 0.32 * cos(
        (3 * avgh + 6).toRadians()) - 0.20 * cos((4 * avgh - 63).toRadians());
    //(16)
    immutable deltaTheta = 30 * exp(-1 * ((avgh - 275) / 25) ^^ 2);
    //(17)
    immutable RC = 2 * sqrt(avgNewC ^^ 7 / (avgNewC ^^ 7 + 25L ^^ 7));
    //(18)
    immutable SL = 1 + (0.015 * (avgL - 50) ^^ 2) / (sqrt(20 + (avgL - 50) ^^ 2));
    //(19)
    immutable SC = 1 + 0.045 * avgNewC;
    //(20)
    immutable SH = 1 + 0.015 * avgNewC * T;
    //(21)
    immutable RT = -1 * sin((2 * deltaTheta).toRadians()) * RC;
    //(22)
    immutable dCdkCSC = deltaC / (kC * SC);
    immutable dHdkHSH = deltaH / (kH * SH);
    debug (deltaE_00)
    {
        printf(
            "%.4f\t%.4f\t%.4f\t%.4Lf\t%.4Lf\t%.4lf\t%.4lf\t" ~ "%.4Lf\t%.4lf\t%.4Lf\t%.4Lf\t%.4Lf\t%.4Lf\t%.4Lf\n",
            colour1.L, colour1.a, colour1.b, a1, C1, h1, avgh, G, T, SL, SC,
            SH, RT, sqrt((deltaL / (kL * SL)) ^^ 2 + dCdkCSC ^^ 2 + dHdkHSH ^^ 2 + RT * dCdkCSC * dHdkHSH));
        printf("%.4f\t%.4f\t%.4f\t%.4Lf\t%.4Lf\t%.4lf\n", colour2.L, colour2.a,
            colour2.b, a2, C2, h2);
    }
    immutable result = sqrt((deltaL / (kL * SL)) ^^ 2 + dCdkCSC ^^ 2 + dHdkHSH ^^ 2 + RT * dCdkCSC * dHdkHSH);
    return result;
}
///
unittest
{
    immutable Lab[34] inputA = [{L:
    50.0000, a : 2.6772, b : -79.7751}, {L:
    50.0000, a : 3.1571, b : -77.2803}, {L:
    50.0000, a : 2.8361, b : -74.0200}, {L:
    50.0000, a : -1.3802, b : -84.2814}, {L:
    50.0000, a : -1.1848, b : -84.8006}, {L:
    50.0000, a : -0.9009, b : -85.5211}, {L:
    50.0000, a : 0.0000, b : 0.0000}, {L:
    50.0000, a : -1.0000, b : 2.0000}, {L:
    50.0000, a : 2.4900, b : -0.0010}, {L:
    50.0000, a : 2.4900, b : -0.0010}, {L:
    50.0000, a : 2.4900, b : -0.0010}, {L:
    50.0000, a : 2.4900, b : -0.0010}, {L:
    50.0000, a : -0.0010, b : 2.4900}, {L:
    50.0000, a : -0.0010, b : 2.4900}, {L:
    50.0000, a : -0.0010, b : 2.4900}, {L:
    50.0000, a : 2.5000, b : 0.0000}, {L:
    50.0000, a : 2.5000, b : 0.0000}, {L:
    50.0000, a : 2.5000, b : 0.0000}, {L:
    50.0000, a : 2.5000, b : 0.0000}, {L:
    50.0000, a : 2.5000, b : 0.0000}, {L:
    50.0000, a : 2.5000, b : 0.0000}, {L:
    50.0000, a : 2.5000, b : 0.0000}, {L:
    50.0000, a : 2.5000, b : 0.0000}, {L:
    50.0000, a : 2.5000, b : 0.0000}, {L:
    60.2574, a : -34.0099, b : 36.2677}, {L:
    63.0109, a : -31.0961, b : -5.8663}, {L:
    61.2901, a : 3.7196, b : -5.3901}, {L:
    35.0831, a : -44.1164, b : 3.7933}, {L:
    22.7233, a : 20.0904, b : -46.6940}, {L:
    36.4612, a : 47.8580, b : 18.3852}, {L:
    90.8027, a : -2.0831, b : 1.4410}, {L:
    90.9257, a : -0.5406, b : -0.9208}, {L:
    6.7747, a : -0.2908, b : -2.4247}, {L:
    2.0776, a : 0.0795, b : -1.1350}];
    immutable Lab[34] inputB = [{L:
    50.0000, a : 0.0000, b : -82.7485}, {L:
    50.0000, a : 0.0000, b : -82.7485}, {L:
    50.0000, a : 0.0000, b : -82.7485}, {L:
    50.0000, a : 0.0000, b : -82.7485}, {L:
    50.0000, a : 0.0000, b : -82.7485}, {L:
    50.0000, a : 0.0000, b : -82.7485}, {L:
    50.0000, a : -1.0000, b : 2.0000}, {L:
    50.0000, a : 0.0000, b : 0.0000}, {L:
    50.0000, a : -2.4900, b : 0.0009}, {L:
    50.0000, a : -2.4900, b : 0.0010}, {L:
    50.0000, a : -2.4900, b : 0.0011}, {L:
    50.0000, a : -2.4900, b : 0.0012}, {L:
    50.0000, a : 0.0009, b : -2.4900}, {L:
    50.0000, a : 0.0010, b : -2.4900}, {L:
    50.0000, a : 0.0011, b : -2.4900}, {L:
    50.0000, a : 0.0000, b : -2.5000}, {L:
    73.0000, a : 25.0000, b : -18.0000}, {L:
    61.0000, a : -5.0000, b : 29.0000}, {L:
    56.0000, a : -27.0000, b : -3.0000}, {L:
    58.0000, a : 24.0000, b : 15.0000}, {L:
    50.0000, a : 3.1736, b : 0.5854}, {L:
    50.0000, a : 3.2972, b : 0.0000}, {L:
    50.0000, a : 1.8634, b : 0.5757}, {L:
    50.0000, a : 3.2592, b : 0.3350}, {L:
    60.4626, a : -34.1751, b : 39.4387}, {L:
    62.8187, a : -29.7946, b : -4.0864}, {L:
    61.4292, a : 2.2480, b : -4.9620}, {L:
    35.0232, a : -40.0716, b : 1.5901}, {L:
    23.0331, a : 14.9730, b : -42.5619}, {L:
    36.2715, a : 50.5065, b : 21.2231}, {L:
    91.1528, a : -1.6435, b : 0.0447}, {L:
    88.6381, a : -0.8985, b : -0.7239}, {L:
    5.8714, a : -0.0985, b : -2.2286}, {L:
    0.9033, a : -0.0636, b : -0.5514}];
    immutable float[34] expectedResults = [
        2.0425, 2.8615, 3.4412, 1.0000, 1.0000, 1.0000, 2.3669, 2.3669, 7.1792,
        7.1792, 7.2195, 7.2195, 4.8045, 4.8045, 4.7461, 4.3065, 27.1492,
        22.8977, 31.9030, 19.4535, 1.0000, 1.0000, 1.0000, 1.0000, 1.2644,
        1.2630, 1.8731, 1.8645, 2.0373, 1.4146, 1.4441, 1.5381, 0.6377, 0.9082
    ];
    float[] actualResultA;
    float[] actualResultB;
    debug (deltaE_00)
    {
        foreach (ref a, ref b; lockstep(inputA[], inputB[]))
        {
            actualResultA ~= deltaE_00(a, b);
        }
    }
    else
    {
        writeln("[deltaE_00 test]");
        foreach (ref a, ref b; lockstep(inputA[], inputB[]))
        {
            actualResultA ~= deltaE_00(a, b);
            actualResultB ~= deltaE_00(b, a);
        }
        foreach (size_t i, ref a, ref b, ref e; lockstep(actualResultA[],
                actualResultB[], expectedResults[]))
        {
            writefln("(%s) ΔE₀₀¹²: %.4f\tΔE₀₀²¹: %.4f\tΔE₀₀: %.4f",
                i + 1, a, b, e);
            assert(a.approxEqual(e) && b.approxEqual(e));
        }
    }
}

/++ Calculates the average colour of every pixel of the sample
  + in Lab space
  + Returns: the average colour
  + Params:
  +     rect = the sample to average +/
auto calculateAvgColour(in vec4 rect)
in
{
    assert(!imageLab.empty);
}
body
{
    /** This naive implementation suffers from floating-point error.
      * I recommend using pairwise summation because it could be sped up with
      * SIMD, which is probably the best option to get better speed and accuracy.
      * OpenCL would be too much overhead, because our samples are small, although
      * task parallelism could be viable if samples are averaged in batch. */
    immutable sample = rect.asPixelCoords();
    auto average = Lab(0.0f, 0.0f, 0.0f);
    for (int i = sample.y; i < sample.y + sample.q; ++i)
        for (int j = sample.x; j < sample.x + sample.p; ++j)
        {
            immutable idx = j + i * originalImageDimensions.x;
            average.L += imageLab[idx].L;
            average.a += imageLab[idx].a;
            average.b += imageLab[idx].b;
        }
    average.L /= sample.p * sample.q;
    average.a /= sample.p * sample.q;
    average.b /= sample.p * sample.q;
    return average;
}
///A colour in the CIE L*a*b* (CIELAB) colour space
struct Lab
{
    float L; ///L* component representing lightness
    float a; ///a* component representing position between red/magenta and green
    float b; ///b* component representing position between yellow and blue
    private float _p; //padding
    /* The padding is because OpenCL uses 32bpp images, and we want to be able
     * to cast the output of our rgb to lab kernel to Lab[] */
}


  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/// Converts raster images from RGB space to Lab space
module treecount.rgbtolab;
import std.algorithm, std.array, std.math, std.range, std.stdio;
import derelict.opencl.cl, derelict.sdl2.sdl;
import treecount.cl.program, treecount.colours, treecount.globals,
    treecount.init;

/++ Wrapper function for calling the rgb to Lab kernel in OpenCL
  +
  + Returns: The raster as an array of `treecount.colours.Lab`
  + Params:
  +     imageSurface = An input raster in SDL_PIXELFORMAT_ABGR8888 +/
auto rgbRasterToLab(SDL_Surface* imageSurface)
in
{
    assert(imageSurface);
    assert(imageSurface.format.format == SDL_PIXELFORMAT_ABGR8888);
}
out (result)
{
    assert(!result.empty);
}
body
{
    auto program = createProgram!"rgbToLab.cl"(Device.GPU);
    scope (exit)
        clReleaseProgram(program);
    auto rgbToLabKernel = clCreateKernel(program, "clRGBToLab".ptr, &err);
    scope (exit)
        clReleaseKernel(rgbToLabKernel);
    assert(rgbToLabKernel);
    Lab[] result;
    result.length = imageSurface.w * imageSurface.h;
    /+ We need to chunk this computation up because the image might be larger than
     + the supported texture memory.
     +
     + The amount of memory we need to allocate on the host is equal to
     + chunkSize^2 * 4 bytes-per-pixel for the input image
     + chunkSize^2 * 16 bytes-per-pixel for the output image
     +
     + Solving 16chunkSize^2 = gpuMaxAlloc for chunkSize gives us
     + chunkSize = sqrt(gpuMaxAlloc/16)
     +
     + This ensures we will be able to allocate the mem on the GPU, but we may
     + need to go even smaller if the max texture size is less +/
    auto chunkSize = sqrt(gpuMaxAlloc / 16.0).lround();
    {
        auto textureSize = min(gpuMaxWidth, gpuMaxHeight);
        if (chunkSize > textureSize)
            chunkSize = textureSize;
    }
    //TODO: use math~
    size_t widthInChunks = 0;
    while (widthInChunks * chunkSize < imageSurface.w)
        ++widthInChunks;
    size_t heightInChunks = 0;
    while (heightInChunks * chunkSize < imageSurface.h)
        ++heightInChunks;
    for (size_t i = 0; i < heightInChunks; ++i)
        for (size_t j = 0; j < widthInChunks; ++j)
        {
            /+ The chunks on the right and bottom sides of the image might have
             + smaller width/height than the others because they hit the side of
             + the image +/
            size_t width = j * chunkSize + chunkSize <= imageSurface.w ? chunkSize
                : imageSurface.w - j * chunkSize;
            size_t height = i * chunkSize + chunkSize <= imageSurface.h ? chunkSize
                : imageSurface.h - i * chunkSize;
            size_t inputOffset = 4 * (chunkSize * j + imageSurface.w * chunkSize * i);
            cl_image_format inputImageFormat;
            inputImageFormat.image_channel_order = CL_RGBA;
            inputImageFormat.image_channel_data_type = CL_UNSIGNED_INT8;
            cl_image_desc inputImageDesc;
            inputImageDesc.image_type = CL_MEM_OBJECT_IMAGE2D;
            inputImageDesc.image_width = width;
            inputImageDesc.image_height = height;
            inputImageDesc.image_depth = 1;
            inputImageDesc.image_row_pitch = imageSurface.pitch;
            inputImageDesc.image_slice_pitch = 0;
            inputImageDesc.num_mip_levels = 0;
            inputImageDesc.num_samples = 0;
            inputImageDesc.buffer = null;
            cl_mem clImageInput = clCreateImage(gpuContext,
                CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY, &inputImageFormat,
                &inputImageDesc, cast(ubyte*) imageSurface.pixels + inputOffset, &err);
            assert(err == CL_SUCCESS);
            assert(clImageInput);
            scope (exit)
            {
                err = clReleaseMemObject(clImageInput);
                assert(err == CL_SUCCESS);
            }
            err = clSetKernelArg(rgbToLabKernel, 0, cl_mem.sizeof, &clImageInput);
            assert(err == CL_SUCCESS);
            size_t outputOffset = 4 * (chunkSize * j + imageSurface.w * chunkSize * i);
            cl_image_format outputImageFormat;
            outputImageFormat.image_channel_order = CL_RGBA;
            outputImageFormat.image_channel_data_type = CL_FLOAT;
            cl_image_desc outputImageDesc;
            outputImageDesc.image_type = CL_MEM_OBJECT_IMAGE2D;
            outputImageDesc.image_width = width;
            outputImageDesc.image_height = height;
            outputImageDesc.image_depth = 1;
            outputImageDesc.image_row_pitch = 0;
            outputImageDesc.image_slice_pitch = 0;
            outputImageDesc.num_mip_levels = 0;
            outputImageDesc.num_samples = 0;
            outputImageDesc.buffer = null;
            /+ I'm not using CL_MEM_USE_HOST_PTR here because I currently don't
             + know exactly how to properly map and unmap the output.
             + Do you need to unmap before you free the object?
             + I can replace the read call with a map call, but is that the
             + right place to map? Are you supposed to map before you run the
             + kernel, do a read, and then unmap?
             + Until I know the answers to these questions, it is simpler to just
             + allocate on the device and read the output back to host. +/
            cl_mem clImageOutput = clCreateImage(gpuContext, CL_MEM_WRITE_ONLY,
                &outputImageFormat, &outputImageDesc, null, &err);
            assert(err == CL_SUCCESS);
            assert(clImageOutput);
            scope (exit)
            {
                err = clReleaseMemObject(clImageOutput);
                assert(err == CL_SUCCESS);
            }
            err = clSetKernelArg(rgbToLabKernel, 1, cl_mem.sizeof, &clImageOutput);
            assert(err == CL_SUCCESS);
            size_t[2] rgbToLabWorkSize = [width, height];
            cl_event rgbToLabKernelEvent;
            err = clEnqueueNDRangeKernel(gpuQueue, rgbToLabKernel, 2, null,
                rgbToLabWorkSize.ptr, null, 0, null, &rgbToLabKernelEvent);
            assert(err == CL_SUCCESS);
            size_t[3] readImageOrigin = [0, 0, 0];
            size_t[3] readImageRegion = [width, height, 1];
            size_t readImageRowPitch = float.sizeof * 4 * imageSurface.w;
            cl_event enqueueReadImageEvent;
            err = clEnqueueReadImage(gpuQueue, clImageOutput, CL_TRUE,
                readImageOrigin.ptr, readImageRegion.ptr, readImageRowPitch, 0,
                cast(float*) result.ptr + outputOffset, 1,
                &rgbToLabKernelEvent, &enqueueReadImageEvent);
            assert(err == CL_SUCCESS);
        }
    clFlush(gpuQueue);
    clFinish(gpuQueue);
    return result;
}
///
unittest
{
    writeln("[rgbRasterToLab test]");
    initOpenCL();
    scope (exit)
        closeOpenCL();
    /* pretend we have 2x2px texture memory so rgbRasterToLab has to chunk up
     * the computation into multiple kernel runs. */
    gpuMaxHeight = 2;
    gpuMaxWidth = 2;
    initSDL2();
    scope (exit)
        closeSDL2();
    /+ It was simpler to just type the structured art in the source than open and
     + parse an image file. There are redundant computations in this test because
     + the image is rectangular (like real data). +/
    immutable ubyte[] input = [
        0x00, 0x00, 0x00, 0xFF, //black
        0xFF, 0xFF, 0xFF, 0xFF, //white
        0xFF, 0xFF, 0x00, 0xFF, //yellow
        0x00, 0xFF, 0x00, 0xFF, //green
        0x00, 0x00, 0x00, 0xFF, //black
        0xFF, 0xFF, 0xFF, 0xFF, //white
        0xFF, 0xFF, 0xFF, 0xFF, //white
        0xFF, 0xFF, 0xFF, 0xFF, //white
        0xFF, 0xFF, 0xFF, 0xFF, //white
        0x00, 0x00, 0x00, 0xFF, //black
        0xFF, 0x00, 0xFF, 0xFF, //magenta
        0xFF, 0xFF, 0xFF, 0xFF, //white
        0x00, 0xFF, 0xFF, 0xFF, //cyan
        0xFF, 0xFF, 0xFF, 0xFF, //white
        0x00, 0x00, 0x00, 0xFF, //black
        0xFF, 0x00, 0x00, 0xFF, //red
        0xFF, 0xFF, 0xFF, 0xFF, //white
        0xFF, 0xFF, 0xFF, 0xFF, //white
        0x00, 0x00, 0xFF, 0xFF, //blue
        0x00, 0x00, 0x00, 0xFF, //black
        0x00, 0x00, 0x00, 0xFF, //black
        0x00, 0x00, 0x00, 0xFF, //black
        0x00, 0x00, 0x00, 0xFF, //black
        0x00, 0x00, 0x00, 0xFF, //black
        0x00, 0x00, 0x00, 0xFF
    ]; //black
    auto surface = SDL_CreateRGBSurfaceFrom(cast(void*) input.ptr, //pixels
    5, //width
    5, //height
    32, //depth
    20, //pitch
        0x000000FF, //rmask
        0x0000FF00, //gmask
        0x00FF0000, //bmask
        0xFF000000); //amask
    assert(surface);
    scope (exit)
    {
        SDL_FreeSurface(surface);
    }
    auto result = rgbRasterToLab(surface);
    immutable Lab[] expected = [{L:
    0.0, a : 0.0, b : 0.0}, //black
    {L:
    100.0000, a : 0.0052, b : -0.0104}, //white
    {L:
    97.1382, a : -21.5559, b : 94.4825}, //yellow
    {L:
    87.7370, a : -86.1846, b : 83.1812}, //green
    {L:
    0.0, a : 0.0, b : 0.0}, //black
    {L:
    100.0000, a : 0.0052, b : -0.0104}, //white
    {L:
    100.0000, a : 0.0052, b : -0.0104}, //white
    {L:
    100.0000, a : 0.0052, b : -0.0104}, //white
    {L:
    100.0000, a : 0.0052, b : -0.0104}, //white
    {L:
    0.0, a : 0.0, b : 0.0}, //black
    {L:
    60.3199, a : 98.2542, b : -60.8430}, //magenta
    {L:
    100.0000, a : 0.0052, b : -0.0104}, //white
    {L:
    91.1165, a : -48.0796, b : -14.1381}, //cyan
    {L:
    100.0000, a : 0.0052, b : -0.0104}, //white
    {L:
    0.0, a : 0.0, b : 0.0}, //black
    {L:
    53.2329, a : 80.1093, b : 67.2200}, //red
    {L:
    100.0000, a : 0.0052, b : -0.0104}, //white
    {L:
    100.0000, a : 0.0052, b : -0.0104}, //white
    {L:
    32.3026, a : 79.1967, b : -107.8637}, //blue
    {L:
    0.0, a : 0.0, b : 0.0}, //black
    {L:
    0.0, a : 0.0, b : 0.0}, //black
    {L:
    0.0, a : 0.0, b : 0.0}, //black
    {L:
    0.0, a : 0.0, b : 0.0}, //black
    {L:
    0.0, a : 0.0, b : 0.0}, //black
    {L:
    0.0, a : 0.0, b : 0.0}]; //black
    foreach (size_t i, ref a, ref e; lockstep(result[], expected[]))
    {
        writefln("(%s) Actual: (%.4f, %.4f, %.4f)\tExpected: (%.4f, %.4f, %.4f)",
            i + 1, a.L, a.a, a.b, e.L, e.a, e.b);
        assert(a.L.approxEqual(e.L) && a.a.approxEqual(e.a) && a.b.approxEqual(e.b));
    }
}


 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
///Functionality relating to building OpenCL programs
module treecount.cl.program;
import std.stdio;
import derelict.opencl.cl;
import treecount.globals;

/++ Wrapper to create and build an OpenCL 1.2 program from source
  +
  + Returns: The program (if it built successfully)
  + Params:
  +     source = The file name of the source. Must be known at compile-time as
  +              this function embeds the file contents into the executable.
  +     deviceType = The type of device to build for (CPU or GPU) +/
cl_program createProgram(string source)(Device deviceType)
{
    auto sourcePtr = import(source).ptr;
    auto context = (deviceType == Device.CPU) ? cpuContext : gpuContext;
    auto device = (deviceType == Device.CPU) ? cpuDevice : gpuDevice;
    auto program = clCreateProgramWithSource(context, 1, &sourcePtr, null, &err);
    assert(program);
    err = clBuildProgram(program, 1, &device, "-Werror -cl-std=CL1.2".ptr, null, null);
    assert(err == CL_SUCCESS);
    cl_build_status programBuildStatus;
    err = clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_STATUS,
        cl_build_status.sizeof, &programBuildStatus, null);
    assert(err == CL_SUCCESS);
    debug if (programBuildStatus != CL_BUILD_SUCCESS)
    {
        size_t logLength;
        clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, 0, null, &logLength);
        char[] log;
        log.length = logLength;
        clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, logLength, log.ptr,
            null);
        stderr.writeln(log);
        assert(false);
    }
    return program;
}
///Device types for creating programs
enum Device
{
    CPU, ///
    GPU ///
}


 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
float4 normalizeRGB(const uint4);
float4 normalizeRGB(const uint4 c)
{
    float4 result = (float4)(c.x/255.0,c.y/255.0,c.z/255.0,c.w/255.0);
    return result;
}
float XYZc(const float);
float XYZc(const float channel)
{
    if(channel <= 0.04045) return channel/12.92;
    return pow((channel + 0.055)/1.055, 2.4) * 100.0;
}
float4 rgbToXYZ(const float4);
float4 rgbToXYZ(const float4 c)
{
    const float r = XYZc(c.x);
    const float g = XYZc(c.y);
    const float b = XYZc(c.z);
    const float4 result = (float4)((r*0.4124 + g*0.3576 + b*0.1805),
                                   (r*0.2126 + g*0.7152 + b*0.0722),
                                   (r*0.0193 + g*0.1192 + b*0.9505),
                                   c.w);
    return result;
}
float Labf(const float);
float Labf(const float v)
{
    const float epsilon = 0.008856;
    const float kappa = 903.3;
    if(v > epsilon) return pow((float)v, (float)(1.0/3.0));
    return (kappa*v + 16.0)/116.0;
}
float4 XYZToLab(const float4);
float4 XYZToLab(const float4 c)
{
    const float4 D65 = (float4)(95.047, 100.0, 108.883, 0.0);
    const float4 normalizedColour = (float4)(c.x/D65.x, c.y/D65.y, c.z/D65.z, c.w);
    float4 result = (float4)(116.0*Labf(normalizedColour.y) - 16.0,
                    500.0*(Labf(normalizedColour.x) - Labf(normalizedColour.y)),
                    200.0*(Labf(normalizedColour.y) - Labf(normalizedColour.z)),
                    c.w);
    return result;
}
__kernel void clRGBToLab(__read_only image2d_t src, __write_only image2d_t dest)
{
    const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE
        |CLK_ADDRESS_CLAMP
        |CLK_FILTER_NEAREST;
    const int x = get_global_id(0);
    const int y = get_global_id(1);
    const int2 idx = (int2)(x, y);
    write_imagef(
        dest,
        idx,
        XYZToLab(
            rgbToXYZ(
                normalizeRGB(
                    read_imageui(
                        src,
                        sampler,
                        idx)))));
}